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Abstract—In this paper, we present a novel face hallucination
method by neighbor embedding considering illumination adap-
tation (NEIA) to super-resolve faces when the lighting conditions
of the training faces mismatch those of the testing face. For
illumination adjustment, face alignment is employed through
dense correspondence. Next, every training face is composed into
two layers to extract both details and highlight components. By
operating the two layers of each face respectively, an extended
training set is acquired by combining the original and adapted
faces compensated in illumination. Finally, we reconstruct the
input faces through neighbor embedding. To improve the esti-
mation of neighbor embedding coefficients, nonlocal similarity
is taken into consideration. Experimental results show that the
proposed method outperforms other state-of-the-art methods
both in subjective and objective qualities.

I. INTRODUCTION

Face hallucination refers to a domain-specific super-
resolution (SR) problem. It aims to reconstruct a high res-
olution (HR) human face automatically from one or a set
of low resolution (LR) faces. The technique benefits a lot
of fundamental applications such as face recognition, face
detection and image compression. However, general super
resolution algorithms might fail to recover high-frequency
facial details due to the negligence of the structure features
of human faces. There are still a lot of challenges remaining
in face hallucination.

In order to recover the facial details more effectively and
improve the visual qualities of hallucinated faces, a number
of methods have been proposed in the past decades. The work
of learning-based face hallucination can be traced back to the
Baker and Kanada’s work [1], in which a probabilistic frame-
work was first proposed to model the relationship between LR
and HR image patches. The target HR image is inferred with
the help of a training set based on a Bayesian formulation.
Following the pioneering work, other methods are proposed
to hallucinate faces. Among them, a general super resolution
method [2] based on neighbor embedding with a manifold
assumption has shown impressive performance when applied
to face hallucination. LR and HR patches are assumed to share
similar local geometry and neighborhood relationship. The HR
patches are generated by linearly combining similar patches in
the training set with weights of the training patches estimated
in the LR feature space.
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Then, some two-step approaches were proposed to combine
both global and local methods to improve the results of
previous methods. These methods first reconstruct a smooth
face by global methods and then compensate the residue with
local patch-based methods to further enhance the local details.
Motivated by a Markov Random Field (MRF) based image
SR framework, Liu et al. [3] hallucinated LR face images by
decomposing face appearance into a global parametric model
and a local Markov network model with a large collection of
HR face images.

Recently, Ma et al. [4] proposed a position-prior approach
to save the computational complexity and produce good super-
resolved results. The HR faces are generated by linearly
combining image patches at the same position of each training
image. Yang et al. [5] introduced a face hallucination algo-
rithm by employing the most similar facial components in
the training faces. The drawback of this method is that there
are significant distortions in results when no highly similar
components are found in the training set.

Nevertheless, few of the existing approaches address the
issue that non-equal testing and training set might result in
degraded results. For example, when the testing face undergoes
significant illumination changing like highlight or shading
comparing with the training faces, the facial details cannot be
generated effectively by existing learning-based approaches.
From the theoretical view, it is mainly because the inconsisten-
cy of high-frequency statistics between patches under different
illumination conditions. So the high-frequency signals of the
ill-posed image cannot be well recovered.

In our work, we develop a novel face hallucination method
based on neighbor embedding to relieve the inconsistency
between training and testing faces in terms of illumination.
Considering the diverse distribution of highlight on human
faces caused by the position of the light source, we first
precisely align the training and testing faces through dense
correspondence with the help of SIFT flow. Decomposed into
two layers, each training face is modified according to the
energy variation of the testing face to introduce both high-
frequency details and amount of highlight to the original
training faces. Then, the training set is extended by combining
original and light-adapted training faces. We finally recon-
struct the testing face via neighbor embedding, which takes
the nonlocal similarity into account to obtain good estimates
of neighbor embedding regression coefficients.

The rest of the paper is organized as follows. In Sec.II,
the basic neighbor embedding is reviewed. Sec.III focuses on
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Fig. 1. The Framework of the Face Hallucination Based on Neighbor Embedding via Illumination Adaptation.

the illumination adaptation and face reconstruction process.
Experimental results compared with other face hallucination
methods are presented in Sec.IV. Finally, the conclusion is
drawn in Sec.V.

II. OVERVIEW OF NEIGHBOR EMBEDDING

The traditional neighbor embedding [2] usually reconstructs
the images using coupled dictionaries. HR and LR images are
assumed to form manifolds with similar local geometry. Given
one input LR image, the goal is to reconstruct HR patches as
a weighted average of neighbors using the same coefficients
in the LR space. Then, the target HR image is generated by
integrating the HR patches according to their positions. To
formulate this problem, let X = {xi

s}Ni=1 and Y = {yis}Ni=1

be the LR and HR patch dictionaries, respectively. N is the
dictionary size. After separating the input LR image Xt into
small patches, for each LR patch xt, its K nearest neighbors
Nl = [xi1

s , xi2
s , ..., xiK

s ] in the training set X are obtained
through retrieval algorithms such as K-nearest neighbor (K-
NN). To minimize the reconstruction error, the optimal recon-
struction coefficient α is estimated by:

min
α

∥xt −Nlα∥22 s.t. 1Tα = 1, (1)

which is a constrained least squares problem. The coefficient α
can be calculated by solving a linear system equation Glα = 1,
subject to 1Tα = 1, where Gl = (xt1T −Nl)

T (xt1T −Nl).
The corresponding HR patch yt is given by applying the same
reconstruction weights to corresponding neighbor HR patches
Nh = [yi1s , yi2s , ..., yiKs ] in the HR domain as follows:

yt = Nhα. (2)

Finally the target image is reconstructed by integrating hal-
lucinated HR patches. The overlap portions of patches are
averaged among different patches.

However, face hallucination with this approach does not
consider the characteristics of the testing face to process the
training set. The inconsistency in illumination between training
and testing faces affects the visual quality of reconstructed
images. Thus, we propose a face hallucination method with
illumination adaptation to compensate and extend the training
set.

III. NEIGHBOR EMBEDDING VIA ILLUMINATION
ADAPTATION

Given a testing image under significant illumination varia-
tions comparing with the training faces, the proposed method
can be roughly separated into three stages as indicated in Fig.1:
face alignment through dense correspondence, double-layer
adaptation of illumination and image reconstruction. Before
alignment, we simply interpolate the input LR image by the
Bicubic method the size of the HR training image.

A. Face Alignment through Dense Correspondence

We assume that the training and testing faces have approx-
imately similar facial poses and expressions. Followed by a
dense correspondence between the training and testing faces,
they are first aligned on a coarse level. Using a face detection
and landmark localization method [6], each face is annotated
by 68 landmarks and can be divided into segments according
to the facial components. The eyes and mouth of the testing
face are roughly aligned with those of the training face via an
affine transform. Guided by the segments, we warp the testing
face as the training face. The alignment is finally refined by
using SIFT Flow [7] to put each pixel of the testing face in
correspondence with a pixel of the training face.

B. Double-layer Adaptation of Illumination

In this subsection, the adaptation process of training images
is explained in details. We extract the illumination compo-
nents by image decomposition. Referring [8], the images
are decomposed into double layers with a Gaussian kernel.
The details of the faces can be captured from the first layer
while the second layer describes the highlight conditions. To
adapt the illumination conditions of the testing face, we adopt
corresponding operations on each layer of the training faces,
respectively. This process performing on grayscale images is
achieved in three steps.

In the first step, an HR image Yt for training is decomposed
into double layers with:

Sℓ[Yt] =

{
Yt − Yt ⊗G(σ), ℓ = 1

Yt ⊗G(σ), ℓ = 2
, (3)
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where we denote the level at scale ℓ as Sℓ, and G(σ) is a 2D
normalized Gaussian kernel with standard deviation σ = 8 in
practice, the convolution operator is denoted as ⊗. Absolutely
the same process can be applied to an LR testing image Xt.

Second, the two levels of the training face are processed
separately. For the first level, we estimate its energy by the
local average of the square of layer coefficients to show the
variations in signals. The energy E1 can be given by:

E1[Yt] = S2
1 [Yt]⊗G(σ). (4)

To adjust the energy distribution of the training face as similar
as the testing face, we perform the adjustment operation on
the first layer as:

S1[O] = S1[Yt]×

√
M(E1[Xt])

E1[Yt] + ε
, (5)

where O represents the output, M(·) denotes the morphing
operator defined by the correspondence field in the process
of alignment, and E1[Xt] can be calculated similarly as (4).
In addition, we use ε = 0.0001 in case division by zero.
To compensate the amount of the illumination, we simply
substitute the second warped layer of the testing face for that
of the training face as follows:

S2[O] = M(S2[Xt]). (6)
The final processed image O is generated in the last step,

which is given as:
O = S1[O] + S2[O]. (7)

As shown in the illumination adaptation stage of Fig.1, the
training faces successfully inherit the illumination conditions
of the testing face, such as the highlight on the forehead. By
altering the energy distribution on the first level, details caused
by the light source of the testing face are well preserved onto
the training faces. In the meantime, the highlight area is well
transformed onto the training faces through aggregating the
second warped level of the testing face directly.

C. Image Reconstruction via Nonlocally Centralized Neighbor
Embedding

After modifying every training face according to the illumi-
nation conditions of the testing face, we acquire an enriched
training set by combining the original and transformed train-
ing images which contain more abundant information. With
the extended training set, we solve face hallucination using
neighbor embedding approaches with nonlocal redundancy.

According to the traditional neighbor embedding method, it
is assumed that small LR and HR patches share the same local
geometrical structure. HR patches can be reconstructed as a
weighted average of neighbors using the same coefficients in
the LR space, which is characterized by how an LR patch can
be represented by its neighbors.

Intuitively, similar patches should have similar linear rep-
resentations. In our work, we employ regularization terms
incorporated with nonlocal redundancy. For each LR patch
xt from the input image Xt, we attempt to acquire a good
estimate β of its representation weights α with the help of
nonlocal similarity. We first search its nonlocal similar patches
(including xt) from Xt through K-NN to form a set of its

similar patches denoted by Ω. N i
l is used as the nearest

neighbors from the LR dictionary of patch xi
t within Ω. Then,

the K most frequent patches of {N i
l }(i ∈ Ω) compose Nl. We

reconstruct each patch xi
t with Nl and acquire the coefficients

{αi}(i ∈ Ω), which can be formulated as a ridge regression
problem:

min
αi

∥xi
t −Nlαi∥22 + λ∥αi∥22, (8)

where parameter λ is the regularization term coefficient and
αi can be solved by αi = (Nl

TNl +λI)−1Nl
Txi

t. Then, β is
calculated by the weighted average of coefficients associated
with the patches in Ω:

β =
∑
i∈Ω

wiαi, wi =
1

W
exp

(
−∥xt − xi

t∥22
h

)
, (9)

where wi is the normalized weight, depending on the distance
between xt and xi

t, and we use W as the normalized factor,
h as a pre-determined scalar. Linearly represented by Nl, the
coefficient α of patch xt can be formulated as:

min
α

∥xt −Nlα∥22 + λ1∥α∥22 + λ2∥α− β∥22, (10)

where λ1, λ2 are parameters to balance the contribution of
regulation terms. Thus, the coefficient α can be solved by:

α = (NT
l Nl + (λ1 + λ2)I)

−1(NT
l xt + λ2β). (11)

Finally, we employ (2) to calculate the corresponding HR
patch yt and the target face is hallucinated using these com-
puted HR patches guided by their positions.

IV. EXPERIMENTAL RESULTS

We use the the Extended Yale Face Database B [9] to
evaluate the proposed method because it consists of subjects
of illumination variations. One set consisting of subjects under
the same lighting condition 000E+00 is utilized as the training
set. And we use another four testing sets under different
illumination conditions (+000E+45, +005E+10, +015E+20,
+035E+15) as the testing faces. The difference between the
five illumination conditions can be viewed in Fig.2.

(a) (b) (c) (d) (e)

Fig. 2. Comparison of different illumination conditions. (a) +000E+00, (b)
+000E+45, (c) +005E+10, (d) +015E+20, (e) +035E+15.

All the faces taken from the the Extended Yale Face
Database B are at the same pose and expression. In our
experiment, we first blur the original HR images with a
Gaussian kernel whose width is 1.6, and then downsample
the blurred images with a scaling factor 4 to obtain the input
LR images. For a specific testing set, we randomly choose a
face from it to adjust the illumination of training faces and
generate its corresponding training set.

The effectiveness of illumination adaption (IA) can be
proved from the zoomed comparison of the highlighted part as
shown in Fig.3. It is obvious that the edge of the ear is clearer
and the highlight in the eyeball is better recovered. With
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TABLE I
AVERAGED PSNR RESULTS BY 4× ON 4 TESTING SETS

Testing Set Bicubic PFH [4] SFH [5] NEFC [10] NENIA NEIA Gain vs. NEFC Gain vs. NENIA
000E+45 32.74 30.31 26.92 33.71 33.92 34.01 0.30 0.09
005E+10 32.95 31.05 27.80 34.40 34.35 34.45 0.05 0.10
015E+20 32.53 30.35 27.07 33.88 33.87 33.98 0.10 0.11
035E+15 32.23 30.06 27.08 33.56 33.55 33.69 0.13 0.14
Average 32.62 30.44 27.22 33.89 33.92 34.03 0.14 0.11

(a) With IA (b) Without IA (c) With IA (d) Without IA

Fig. 3. Effectiveness of the illumination adaption (IA). (a)(c) Results of our
method with IA. (b)(d) Results of our method without IA.
introducing the illumination information to the training set,
facial details can be generated more effectively and obviously.

We compare the proposed algorithm (NEIA) with different
methods, including the Bicubic method, the position method
(PFH) [4], the structured face hallucination method (SFH) [5],
the face hallucination method for facial components (NEFC)
[10]. Besides, to confirm the influence of illumination adjust-
ment, NEIA is also compared with our neighbor embedding
method considering nonlocal similarity, but no illumination
adaptation (NENIA). We implement algorithm in PFH [4],
while others are compared with the original authors’ codes.

The objective results of four testing sets under different
lighting conditions are measured by Peak Signal to Noise
Ratio (PSNR) in Table I. Our proposed method outperforms
other methods and achieves the highest PSNR results. Some
subjective results are presented in Fig.4. Due to the limitation
of position-prior, the results of PFH have some artifacts. SFH
yields some unnatural and distorted results because of the
difficulty in finding highly similar components with lighting
variations. In addition, NEFC does not work well since facial
components suffer illumination changes between testing and
training faces, so it is not appropriate to reconstruct them,
respectively. The objective results prove that illumination
adaptation and neighbor embedding with nonlocal redundancy
contribute to generating better super-resolved details and more
natural faces.

V. CONCLUSIONS

In this paper, we develop a face hallucination method based
on neighbor embedding via illumination adaptation. To relieve
the inconsistency of illumination between testing and training
faces, we process training faces by compensating their illumi-
nation to enrich the training set. The input face is hallucinated
by neighbor embedding with nonlocal redundancy. Experimen-
tal results indicate the proposed method outperforms other
methods in both objective and subjective qualities.
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Fig. 4. The visual results by 4× on the two face images under the illumination conditions +000E+45, +005E+10, respectively.
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